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This work presents experimental liquid densities and ultrasonic velocities
for a collection of substituted aromatic compounds (isobutylbenzene, 1,3,
S-trimethylbenzene, butylbenzene, isopropylbenzene, p-xylene, m-xylene
and o-xylene) at the range of temperature 278.15-323.15K and atmo-
spheric pressure of a collection of halogenated and aromatic hydrocarbons.
Fitting equations were applied to data in order to correlate for later
computer-based design. The estimation of the studied properties was made
by the application of different theoretical procedures. An equation of state
based on the generalised Van der Waals theory which combines the
Staverman—Guggenheim combinatorial term of lattice statistics with an
attractive lattice gas expression and the free length theory (FLT) showed
a good response at the studied conditions.

Keywords: density; ultrasonic velocity; equation of state; free length theory

1. Introduction

Reliable thermodynamic data of environmental pollutants are highly important
from both practical and theoretical points of view. Environmental chemistry and
engineering need this information for modelling the dispersion of organic pollutants in
the environment, to solve the remediation of contaminated soils and surface waters,
minimise the presence of hazardous pollutants in aqueous effluents and develop new
strategies for cheap and effective cleaning procedures and then, adequate decisions
and remediation policies. From a more fundamental point of view, thermodynamic
information is necessary for the understanding of the complex molecular interactions
and mechanisms of solution and dispersion. The test of models and the development of
new prediction methods for these thermodynamic functions, have a particular
significance because they are the only way to ensure accurate results.
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Table 1. Densities (p) and ultrasonic velocities (#) of pure components.

p (298.15K) (gem ®)  u (298.15K) (ms™h)

Component MW* (kg k mol™") Expt. Lit. [6] Expt. Lit. [6]
p-Xylene 106.167 0.856589  0.85661 1305.39 1309.7
m-Xylene 106.167 0.859471  0.85999° 1318.80 1320°
0-Xylene 106.167 0.874708  0.87593° 1347.26 1348°
1,3,5-Trimethylbenzene 120.194 0.861148  0.86111 1330.12 1336.8
Isopropylbenzene 120.194 0.857518  0.85743 1305.07 1307.7
Butylbenzene 134.221 0.856214  0.85607 1321.33 1334.1
Isobutylbenzene 134.221 0.849058  0.84907 1294.98 1296.9

Notes: *Ref. [4]. "Ref. [7].

With these facts in mind, as a continuation of our scientific work investigating
physical properties related to characterisation of pollutants [1,2], this work presents
the temperature dependence of density and ultrasonic velocity at the range of
temperature 278.15-323.15K and atmospheric pressure of a collection of haloge-
nated and aromatic hydrocarbons (isobutylbenzene, 1,3,5-trimethylbenzene, butyl-
benzene, isopropylbenzene, p-xylene, m-xylene and o-xylene). From the experimental
data, temperature-dependent polynomials were fitted. Different derived properties
were computed from density and ultrasonic velocity data, since they are important
in the study of the thermodynamic trend and theoretical calculations. Because of the
expense of the experimental measurement of such data and current processes design
is strongly computer oriented, consideration was also given to how accurate different
theoretical methods work by comparison with the experimental data. Different
procedures were applied to the experimental data. A lattice type equation of state
was applied to simultaneously correlate vapour pressure and densities in order to
describe the non-ideal temperature dependence of these magnitudes at a wide range.
The Equation of State (EOS) is based on the generalised Van der Waals theory and
combines the Staverman—Guggenheim combinatorial term of lattice statistics with an
attractive lattice gas expression [3]. The free length theory (FLT) was applied to
estimate the ultrasonic velocity of these compounds [4]. Satisfactory results were
obtained for both properties, a good accuracy being obtained for a wide range of
temperatures.

2. Experimental section
2.1. Materials

All chemical solvents used in the preparation of samples were supplied by Merck
with richness higher than 99.5mol%. The pure components were stored in glass
containers protected from sunlight at constant humidity and temperature. All
products were degassed using ultrasound and dried on molecular sieves (pore
diameter of 4x 107" and 5x107'""m from Fluka) before use. Densities and
ultrasonic velocities of the pure substances were checked and listed in Table 1 and
compared with literature values.
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Figure 1. Curves of ultrasonic velocity (ms™") of p-xylene (<), m-xylene ((J), o-xylene (e),

1,3,5-trimethylbenzene (o), isopropylbenzene (A), butylbenzene ( % ) and isobutylbenzene (%)
at the range of temperature 278.15-323.15K.

2.2. Apparatus and procedure

The ultrasonic velocities and densities were measured with an Anton Paar DSA-5000
device with a precision of £0.0lms ' and +10"°gcem™>. The temperature was
maintained at a constant with a precision of +0.01. Calibration of the apparatus was
performed periodically, in accordance with technical specifications, using Millipore
quality water (resistivity, 18.2 M cm) and ambient air.

2.3. Determination of the experimental uncertainty

The uncertainty of the experimental method was analysed in m-xylene. The density
and speed of sound of m-xylene was measured three times at each temperature (181
temperatures). Then the uncertainty of each measurement was establish as the SD of
the mean and is represented in Figure 1 for each temperature for the two measured
properties. The horizontal line is the mean of all SD and is consider as the
uncertainty of the experimental measurement. In the case of the density we may
establish that the uncertainty of the measurement is approximately 0.00002gcm >
and in the case of speed of sound it is 0.55ms™".

3. Results and discussion
3.1. Data correlation

For compact and smooth representation of the experimental data, the density and
ultrasonic velocity of the chemicals were correlated as a function of temperature in
accordance to Equation (1):

P= XN:A,»Ti, (1)
i=0
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where P is density (gem™) or ultrasonic velocity (ms™'), T is the absolute
temperature in Kelvin degrees and A; are fitting parameters. N stands for the
extension of the mathematical series, which was optimised by means of the
Bevington test. A summarised version of the densities and ultrasonic velocities data
are given by Tables 2 and 3, respectively. The complete data used to correlate the
thermodynamical properties have been submitted as supplementary material
(181 points between 278.15 and 323.15K). The fitting parameters were obtained
by the unweighted least-squared method applying a fitting Marquardt algorithm.
The root mean square deviations were computed using Equation (2)

NDAT _ 2\ 172
o — (Zi:l (Zexp Zpred) ) i (2)

NDAT

where z is the value of the property, and npat is the number of experimental data.

The fitting parameters and the corresponding deviations are gathered in Table 4.
In Figures 2 and 3, the temperature trend of density and ultrasonic velocity are
gathered.

3.2. Derived properties

A frequently applied derived magnitude for chemicals is the temperature dependence
of volumetry, which is expressed as isobaric expansibility or thermal expansion
coefficient (). The data reported in literature normally give only values of thermal
expansion coefficients both of pure compounds and its mixtures, showing the relative
changes in density, calculated by means of —(Ap/p) as a function of temperature and
assuming that o remains constant in any thermal range. This fact is due to the scarce
availability of accurate density data in a wide temperature range. As in the case of
pure chemicals or substances it can be computed at a molar fraction by way of the

expression:
dlnp
= — 3
“ ( aT )P,x’ ( )

taking into account the temperature dependence of density. As shown in Figure 4,
it is important to point out the rapid decreasing values of « when temperature raises
at any compounds having the highest values for p-xylene and the lowest for
butylbenzene. As expected similar values were measured for those chemicals of
analogous structure.

The isentropic compressibility (k) of pure compounds was also calculated from
the density and ultrasonic velocity data using Equation (4):

Figure 5 indicates the behaviour of this magnitude as temperature function. As
expected, this evolution is in opposition to the density and ultrasonic velocity. The
compound with higher isentropic compressibility is isobutylbenzene and the lower is
o-xylene and the other compounds are between them with similar values. This is due
to the same aromatic nature of all compounds.
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Figure 2. (a) Uncertainty of the density measurements for m-xylene (gem™>) and
(b) uncertainty of the speed of sound measurements for m-xylene (ms~").
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Figure 3. Curves of density (gem™) of p-xylene (<), m-xylene (OJ), o-xylene (e),

1,3,5-trimethylbenzene (o), isopropylbenzene (A), butylbenzene (x) and isobutylbenzene (v%)
at the range of temperature 278.15-323.15K.
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Figure 4. Curves of isobaric expansibility (o, K™") of p-xylene (<), m-xylene ((J), o-xylene
(o), 1,3,5-trimethylbenzene (o), isopropylbenzene (A), butylbenzene ( % ) and isobutylbenzene
(Y%) at the range of temperature 278.15-323.15K.
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Figure 5. Curves of isentropic compressibility (TPa™') of p-xylene (<), m-xylene (OJ),
o-xylene (e), 1,3,5-trimethylbenzene (o), isopropylbenzene (A), butylbenzene (x) and
isobutylbenzene (s%) at the range of temperature 278.15-323.15K.

The values of «, and the values of isobaric expansibility computed from the
measured densities and ultrasonic velocities are gathered in the supplementary
material.

3.3. Estimation of density — MTC Lattice Gas EOS

In the last few years, many researchers have applied and modified cubic equations
of state to almost any situation for thermodynamic studies of pure chemicals and
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mixtures, although the success is always strongly dependent on a wide understanding
of how molecules interact in terms of space and energy [7]. However, in the last few
years the interest related to non-cubic theoretically based EOS for prediction of fluid
phase equilibria or others thermodynamical properties has increased. In this work,
the Lattice Gas EOS developed by Mattedi er al. [3] was also used to describe
volumetric trend of these chemicals. Although, the EOS is normally written in group
contribution form, in this work a molecular approach was used, and so the EOS is
written as:

7= 17r1n|:~—v1:| +§§rln|:Li_(q/r):| + £
v

_ W(g/r) q(exp(—u/RT) — 1) 5)
V—1+4(q/r)v— 1+ (q/r)exp(—u/RT)’
where z is the compressibility factor, ¢ is the surface area of the molecule, Z is the
lattice coordination number which is set equal to 10, r is the average number of
segments occupied by a molecule in the lattice, £ = (Z/2)(r — q) — (r — 1), u is the
interaction energy between molecules and W is a constant of the lattice structure
set to 1. The reduced molar volume (v) is given by:

v

(6)

Ve

v is the molar hard-core volume parameter for a molecule. The fugacity coefficient
for a pure component, derived for the model is:

y—1 v
e e R o)
W(q/r)(g —r) v—1+(q/r)
1+ a@n e ln[ﬁ 1+ (¢/7) exp(—u/RT)]

Y (gexp(—u/RT) —r)
I (q/r)exp(—u/RT)

Inz. (7)

It was assumed here, as in previous works, that u is given by:

u uy B
§=§<1+?)' 8)

More details about the EOS could be found in the original work [3].

In summary, the equation of state has four parameters for each pure compound
(v, ¢, uo/ R and B). The cell volume v* is fixed in 5cm® mol~" was used as suggested by
Mattedi et al. [3]. Pure parameters were fitted using the simplex algorithm of Nelder
and Mead (given in [8]), in order to minimise the objective function:

N psat psat psat 2 lig_sat liq_sat lig_sat 2
Zi:l ical — ¥ ipex i,pex + piﬁcal - 'Oi,pex pi,pex
N 9

liq_sat

F=

)

where P*' is the vapour pressure and p is the saturated molar liquid density.
The subscripts cal and pex indicate calculated and pseudo-experimental values and N
is the number of data points used. The applicability of the model is wider if vapour
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pressure data is also used for parameter estimation and so saturation pressures were
also used to obtain EOS parameters. There were pseudo-experimental data used for
saturated densities and vapour pressure generated through DIPPR correlation [9]
to 180 points with temperature ranging from 278.15 to 323.15 K. Parameters from
this EOS have physical meaning and the numerical values for the obtained
parameters presented in Table 5 are coherent. As expected, similar parameters for all
substances have the same magnitude, except for the parameter of temperature
dependence of group-group energy which is a fitting parameter and so could vary in
a larger range. In Table 6, the root mean square deviations and the relative deviation
for vapour pressure (pseudo-experimental data) and liquid density data obtained in
this work are shown. Densities were calculated with the EOS at 101.3 kPa. From the
presented results for vapour pressure deviations it could be seen that a very good
correlation was obtained. Moreover, for densities the EOS were compared with this
work data and the presented results show a very good agreement between
experimental and calculated values.

3.4. Estimation of ultrasonic velocity — firee length theory

The FLT estimates the isentropic compressibility attending to the free displacement
of molecules as a main function of temperature [4]. In the last few years, FLT has

Table 5. Obtained parameters for EOS.

Compound v (cm®*mol ™) q B (K) up/ R (K)
p-Xylene 89.179 12.165 0.387 —446.743
m-Xylene 89.109 12.212 —0.425 —456.025
0-Xylene 87.492 12.041 —0.020 —460.228
1,3,5-Trimethylbenzene 102.493 13.649 16.051 —441.332
Isopropylbenzene 100.181 13.690 0.346 —434.025
Butylbenzene 113.802 15.371 0.322 —436.329
Isobutylbenzene 113.748 15.160 0.269 —424.654

Table 6. Relative deviations between saturated pressure from [9] and
calculated with the EOS, relative deviations between liquid density data
obtained in this work and calculated by the EOS at 101.3kPa and root
mean square deviations for predictive ultrasonic velocity by means of FLT.

psat pliq
Compound AP/P (%) Aplp (%) FLT (o)
p-Xylene 0.32 0.13 37.39
m-Xylene 0.24 0.12 41.80
0-Xylene 0.24 0.15 38.14
1,3,5-Trimethylbenzene 0.21 0.09 43.80
Isopropylbenzene 0.34 0.20 39.79
Butylbenzene 0.38 0.15 31.47

Isobutylbenzene 0.37 0.23 31.71
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proved its applicability for molecules of different nature The experimental data
for the speed of sound of the chemicals studied here were compared with values
determined by the theoretical procedure. This model is expressed as follows:

o= (H). (10)

where K is a temperature-dependent constant [K = (93.87540.375-T) - 107%] and
Ly is the intermolecular free length calculated by the following expression:

where V' is the molar volume, ¥, is the molar volume at absolute zero and Y is the
molar surface area. ¥, and Y are calculated by the following equations:

Y = 408402519.1 - (V) (12)
T 0.3
VO:V'(I_T) , (13)

where T is the critical temperature and values published in literature [10] were used.
Applying Equation (4) in Equation (10), the final expression to calculate the
ultrasonic velocity through the FLT is:

K2
y— (L%p> (14)

The deviations between the predicted and the experimental data for the studied
compounds are gathered in Table 6, giving the FLT acceptable results in terms of
quantity and sign at every studied case.

4. Conclusions

It is well known that thermodynamic properties govern the behaviour and dispersion
of contaminants in the environment. Values of such basic magnitudes as density,
ultrasonic velocities and isentropic compressibilities can thus be applied to model
and predict the displacement, distribution and fate of contaminants into natural
media. In this article, original data for the temperature dependence of density and
ultrasonic velocity at the range of temperature 278.15-323.15K and atmospheric
pressure of a collection of ethers (isobutylbenzene, 1,3,5-trimethylbenzene, butyl-
benzene, isopropylbenzene, p-xylene, m-xylene and o-xylene), have been measured.
In order to provide correlative methods to be used in computer-aided design, data
were directly correlated with polynomial functions. Density and vapour pressures
were simultaneously correlated by a lattice equation of state and then the EOS was
used to predict our experimental density data. Experimental ultrasonic velocities
were compared with the predicted by the FLT. Satisfactory results were obtained
with both models.



07:27 28 January 2011

Downl oaded At:

Physics and Chemistry of Liquids 271

Acknowledgements

This work was supported by the CTQ2004-03346/PPQ Project (Ministerio de Educacion y
Ciencia, Secretaria General de Politica Cientifica y Tecnologica, Espafia). S. Mattedi would
like to thank the support of the Chemical Engineering Department of the ETSEQ, Universitat
Rovira I Virgili during her stay at Tarragona, Spain and the financial support from FAPESB
(Bahia, Brazil).

References

[1] M. Iglesias, S. Mattedi, R. Gonzalez-Olmos, J.M. Goenaga, and J.M. Resa, Chemosphere
67, 384 (2007).

[2] R. Gonzalez-Olmos, M. Iglesias, B.M.R.P. Santos, and S. Mattedi, Phys. Chem. Liq. 46,
223 (2008).

[3] S. Mattedi, F.W Tavares, and M. Castier, Fluid Phase Equilibr. 142, 33 (1998).

[4] B. Jacobson, Acta Chem. Scand. 6, 1485 (1952).

[S] TRC Thermodynamic Tables, Thermodynamic Research Center, Texas and A&M
University, College Station, TX (1994).

[6] J. George and N.V. Sastry, J. Chem. Eng. Data 48, 977 (2003).

[7]1 J.O. Valderrama, Ind. Eng. Chem. Res. 42, 1603 (2003).

[8] W.H. Press, B.P. Flannery, S.A. Teutolsky, and W.T. Vetterling, Numerical Recipes. The
Art of Scientific Computing (Fortran Version) (Cambrigde University Press, New York,
1989).

[9] T.E. Daubert and R.P. Danner, Physical and Thermodynamic Properties of Pure
Compounds, Data Compilation (Taylor and Francis, New York, 1985).

[10] B.E. Poling, J.M. Prausnitz, and J.P. O’Connell, The Properties of Gases and Liquids
(McGraw-Hill, New York, 2001).



